\(\int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx\) [207]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 104 \[ \int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\frac {2 (A-B) c \cos (e+f x) (a+a \sin (e+f x))^m}{f (1+2 m) \sqrt {c-c \sin (e+f x)}}+\frac {2 B c \cos (e+f x) (a+a \sin (e+f x))^{1+m}}{a f (3+2 m) \sqrt {c-c \sin (e+f x)}} \]

[Out]

2*(A-B)*c*cos(f*x+e)*(a+a*sin(f*x+e))^m/f/(1+2*m)/(c-c*sin(f*x+e))^(1/2)+2*B*c*cos(f*x+e)*(a+a*sin(f*x+e))^(1+
m)/a/f/(3+2*m)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {3050, 2817} \[ \int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\frac {2 c (A-B) \cos (e+f x) (a \sin (e+f x)+a)^m}{f (2 m+1) \sqrt {c-c \sin (e+f x)}}+\frac {2 B c \cos (e+f x) (a \sin (e+f x)+a)^{m+1}}{a f (2 m+3) \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(a + a*Sin[e + f*x])^m*(A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]],x]

[Out]

(2*(A - B)*c*Cos[e + f*x]*(a + a*Sin[e + f*x])^m)/(f*(1 + 2*m)*Sqrt[c - c*Sin[e + f*x]]) + (2*B*c*Cos[e + f*x]
*(a + a*Sin[e + f*x])^(1 + m))/(a*f*(3 + 2*m)*Sqrt[c - c*Sin[e + f*x]])

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 3050

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[B/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x
] - Dist[(B*c - A*d)/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f
, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {B \int (a+a \sin (e+f x))^{1+m} \sqrt {c-c \sin (e+f x)} \, dx}{a}-(-A+B) \int (a+a \sin (e+f x))^m \sqrt {c-c \sin (e+f x)} \, dx \\ & = \frac {2 (A-B) c \cos (e+f x) (a+a \sin (e+f x))^m}{f (1+2 m) \sqrt {c-c \sin (e+f x)}}+\frac {2 B c \cos (e+f x) (a+a \sin (e+f x))^{1+m}}{a f (3+2 m) \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.39 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.12 \[ \int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\frac {2 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (a (1+\sin (e+f x)))^m \sqrt {c-c \sin (e+f x)} (-2 B+A (3+2 m)+B (1+2 m) \sin (e+f x))}{f (1+2 m) (3+2 m) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )} \]

[In]

Integrate[(a + a*Sin[e + f*x])^m*(A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]],x]

[Out]

(2*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^m*Sqrt[c - c*Sin[e + f*x]]*(-2*B + A*(3 + 2*m)
 + B*(1 + 2*m)*Sin[e + f*x]))/(f*(1 + 2*m)*(3 + 2*m)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]))

Maple [F]

\[\int \left (a +a \sin \left (f x +e \right )\right )^{m} \left (A +B \sin \left (f x +e \right )\right ) \sqrt {c -c \sin \left (f x +e \right )}d x\]

[In]

int((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x)

[Out]

int((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.59 \[ \int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=-\frac {2 \, {\left ({\left (2 \, B m + B\right )} \cos \left (f x + e\right )^{2} - 2 \, {\left (A + B\right )} m - {\left (2 \, A m + 3 \, A - 2 \, B\right )} \cos \left (f x + e\right ) - {\left (2 \, {\left (A + B\right )} m + {\left (2 \, B m + B\right )} \cos \left (f x + e\right ) + 3 \, A - B\right )} \sin \left (f x + e\right ) - 3 \, A + B\right )} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{4 \, f m^{2} + 8 \, f m + {\left (4 \, f m^{2} + 8 \, f m + 3 \, f\right )} \cos \left (f x + e\right ) - {\left (4 \, f m^{2} + 8 \, f m + 3 \, f\right )} \sin \left (f x + e\right ) + 3 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-2*((2*B*m + B)*cos(f*x + e)^2 - 2*(A + B)*m - (2*A*m + 3*A - 2*B)*cos(f*x + e) - (2*(A + B)*m + (2*B*m + B)*c
os(f*x + e) + 3*A - B)*sin(f*x + e) - 3*A + B)*sqrt(-c*sin(f*x + e) + c)*(a*sin(f*x + e) + a)^m/(4*f*m^2 + 8*f
*m + (4*f*m^2 + 8*f*m + 3*f)*cos(f*x + e) - (4*f*m^2 + 8*f*m + 3*f)*sin(f*x + e) + 3*f)

Sympy [F]

\[ \int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\int \left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{m} \sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )} \left (A + B \sin {\left (e + f x \right )}\right )\, dx \]

[In]

integrate((a+a*sin(f*x+e))**m*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(1/2),x)

[Out]

Integral((a*(sin(e + f*x) + 1))**m*sqrt(-c*(sin(e + f*x) - 1))*(A + B*sin(e + f*x)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 323 vs. \(2 (100) = 200\).

Time = 0.34 (sec) , antiderivative size = 323, normalized size of antiderivative = 3.11 \[ \int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=-\frac {2 \, {\left (\frac {2 \, {\left (\frac {2 \, a^{m} \sqrt {c} m \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {2 \, a^{m} \sqrt {c} m \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - a^{m} \sqrt {c} - \frac {a^{m} \sqrt {c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )} B e^{\left (2 \, m \log \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right ) - m \log \left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )\right )}}{{\left (4 \, m^{2} + 8 \, m + \frac {{\left (4 \, m^{2} + 8 \, m + 3\right )} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 3\right )} \sqrt {\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1}} + \frac {{\left (a^{m} \sqrt {c} + \frac {a^{m} \sqrt {c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )} A e^{\left (2 \, m \log \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right ) - m \log \left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )\right )}}{{\left (2 \, m + 1\right )} \sqrt {\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1}}\right )}}{f} \]

[In]

integrate((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-2*(2*(2*a^m*sqrt(c)*m*sin(f*x + e)/(cos(f*x + e) + 1) + 2*a^m*sqrt(c)*m*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 -
 a^m*sqrt(c) - a^m*sqrt(c)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)*B*e^(2*m*log(sin(f*x + e)/(cos(f*x + e) + 1) +
 1) - m*log(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1))/((4*m^2 + 8*m + (4*m^2 + 8*m + 3)*sin(f*x + e)^2/(cos(f*
x + e) + 1)^2 + 3)*sqrt(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)) + (a^m*sqrt(c) + a^m*sqrt(c)*sin(f*x + e)/(c
os(f*x + e) + 1))*A*e^(2*m*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1) - m*log(sin(f*x + e)^2/(cos(f*x + e) + 1)^
2 + 1))/((2*m + 1)*sqrt(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)))/f

Giac [F]

\[ \int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (a \sin \left (f x + e\right ) + a\right )}^{m} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(-c*sin(f*x + e) + c)*(a*sin(f*x + e) + a)^m, x)

Mupad [B] (verification not implemented)

Time = 1.55 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.01 \[ \int (a+a \sin (e+f x))^m (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=-\frac {{\left (a\,\left (\sin \left (e+f\,x\right )+1\right )\right )}^m\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (6\,A\,\cos \left (e+f\,x\right )-4\,B\,\cos \left (e+f\,x\right )+B\,\sin \left (2\,e+2\,f\,x\right )+4\,A\,m\,\cos \left (e+f\,x\right )+2\,B\,m\,\sin \left (2\,e+2\,f\,x\right )\right )}{f\,\left (\sin \left (e+f\,x\right )-1\right )\,\left (4\,m^2+8\,m+3\right )} \]

[In]

int((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^m*(c - c*sin(e + f*x))^(1/2),x)

[Out]

-((a*(sin(e + f*x) + 1))^m*(-c*(sin(e + f*x) - 1))^(1/2)*(6*A*cos(e + f*x) - 4*B*cos(e + f*x) + B*sin(2*e + 2*
f*x) + 4*A*m*cos(e + f*x) + 2*B*m*sin(2*e + 2*f*x)))/(f*(sin(e + f*x) - 1)*(8*m + 4*m^2 + 3))